Phagocytosis, a cellular immune response in insects

C Rosales

Immunology Department, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico

Accepted June 20, 2011

Abstract

Insects like many other organisms are exposed to a wide range of infectious agents. Defense against these agents is provided by innate immune systems, which include physical barriers, humoral responses, and cellular responses. The humoral responses are characterized by the production of antimicrobial peptides, while the cellular defense responses include nodulation, encapsulation, melanization and phagocytosis. The phagocytic process, whereby cells ingest large particles, is of fundamental importance for insects’ development and survival. Phagocytic cells recognize foreign particles through a series of receptors on their cell membrane for pathogen-associated molecules. These receptors in turn initiate a series of signaling pathways that instruct the cell to ingest and eventually destroy the foreign particle. This review describes insect innate humoral and cellular immune functions with emphasis on phagocytosis. Recent advances in our understanding of the phagocytic cell types in various insect species; the receptors involved and the signaling pathways activated during phagocytosis are discussed.

Key Words: insect; phagocytosis; hemocyte; innate immunity; signal transduction

Introduction

Multicellular organisms possess a series of systemic, cellular and molecular mechanisms, which allow them to protect themselves from infection by viruses, bacteria, fungi and protozoa. These mechanisms are collectively known as immunity. Among the defense mechanisms taking place at the onset of an infection there are early systems, such as constitutive expression of antimicrobial peptides, recognition of microorganisms by pattern-recognition receptors (PRRs), and activation of phagocytic cells, involved in detecting and eliminating pathogens, through a wide variety of cellular responses. These responses are the innate immune systems. In vertebrates, such as mammals, the recognition of antigens by specific receptors of T- and B-lymphocytes is yet another, more precise layer of the defense system, known as adaptive immunity. This adaptive response is activated at later times during the course of an infection. Normally, leukocytes circulate in a resting state, not showing antimicrobial properties. Upon recognition of microorganisms via PRRs or via specialized phagocytic receptors, leukocytes develop a fully active antimicrobial and proinflammatory phenotype. This change is known as activation of phagocytic cells. The signals delivered to the cell by the various receptors determine the final activation stage of the leukocyte. At later times, these activated leukocytes can process and present antigens to specific T- and B-lymphocytes to develop an adaptive immune response, which provides a much better and faster response to the same pathogen during a second challenge. For insects, the view is that they, like other invertebrates, depend only on its innate immune response to fight invading microorganisms; by definition, innate immunity lacks adaptive characteristics. However, there are some reports showing that priming Drosophila with a sublethal dose of Streptococcus pneumoniae protects against an otherwise-lethal second challenge of S. pneumoniae (Pham et al., 2007). This protective effect has loose specificity for S. pneumoniae and persists for the life of the fly. While not all microbial challenges induced this specific primed response, a similar specific protection could be elicited by the fungus Beauveria bassiana, a natural fly pathogen (Pham et al., 2007). These results point out that insect immune responses can indeed adapt and suggest that insect hemocytes may also present an activation response similar to the one known in mammalian leukocytes.
Millions of insect species live in practically every known habitat and ecological niche, though marine environments are an important exception. This diversity exposes insects to all sorts of infectious agents, such as viruses, bacteria, fungi and protozoa. Insects have evolved an effective innate immune system that permits rapid and efficient responses against infectious agents. The innate immune system of insects consists of physical barriers, humoral responses and cellular responses (Lavine et al., 2002; Kanost et al., 2004). In addition, recent evidence suggests that insects also have adaptive immune responses as mentioned before, although these responses are not similar as those traditionally defined in mammals with B- and T-lymphocytes.

Physical barriers include the integument and the peritrophic membrane. Integument, the outer surface of an insect, is formed by a single layer of cells covered by a multi-layered cuticle (Ashida et al., 1996). The peritrophic membrane or peritrophic matrix is a chitin and glycoprotein layer that lines the insect midgut. It is functionally similar to the mucous secretions of the vertebrate digestive tract and hence it acts as a physical barrier, protecting the midgut epithelium from abrasive food particles, digestive enzymes and some digestive pathogens (Lehane, 1997; Hegedus et al., 2009). However, due to its semipermeable nature, this matrix is not an efficient barrier to infection, particularly to viruses. Together these structures form the first line of protection for the hemocel (the insect body cavity) and the midgut epithelium from invading microorganisms. In the case these barriers are breached, the humoral and cellular immune responses are activated. Humoral immune responses include biosynthesis of antimicrobial peptides, activation of enzymes, such as lysozyme and the prophenoloxidase (proPO) system, to regulate coagulation of hemolymph and production of reactive oxygen species (Jiang, 2008; Tsakas et al., 2010). Cellular immune responses include nodulation, encapsulation, and phagocytosis (Strand, 2008; Tsakas et al., 2010).

Hemolymph, the liquid that fills the hemocel of an insect, has an analogous function to both blood and lymph in mammals. It is involved in transport of nutrients and waste products, although not transport of respiratory gases. In addition, it contains several types of free-moving cells or hemocytes. Hemocytes originate from mesodermally derived stem cells that differentiate into specific lineages. The most common types of hemocytes are granulocytes, plasmatocytes, spherulocytes, and oenocytoids (Lavine et al., 2002; Meister et al., 2003). However, it is important to emphasize that not all these hemocyte types exist in all insect species (Meister, 2004; Michela et al., 2005; Manachini et al., 2010; Wang et al., 2010). Hemocytes are essential for insect immunity, as shown in Drosophila melanogaster larvae where plasmatocytes, making up approximately 95% of circulating hemocytes, decrease in numbers during an infection (Williams, 2007). Also, by genetic ablation (Defaye et al., 2009) or mechanical ablation (Charroux et al., 2009b; Nehme et al., 2011) of phagocytic hemocytes in Drosophila, it was observed that in adult flies there is an increase in infection susceptibility to various bacteria including Escherichia coli, Bacillus subtilis and Staphylococcus aureus.

Cellular immune responses are immediate after an invasion of the hemocel, while humoral responses appear several hours after an infection. Based on data from coleopterans, although not shown in other insects yet, it is thought that humoral responses have the function of finishing up the invading microorganisms that escaped the initial cellular immune responses (Haine et al., 2008). Together, physical barriers, humoral, and cellular immune responses provide an effective defense system for the insect. These elements, however, do not work in isolation and in an orderly fashion. There is a complex interplay among them. For example, hemocytes and other insect cells produce molecules that increase hemocyte-microorganism binding (Mohrig et al., 1979; Wiesner et al., 1996; Brivio et al., 2010; Kim et al., 2010). These molecules are similar to the opsonins that increase phagocytosis of leukocytes in mammals. In addition, Drosophila plasmatocytes, which are essential for phagocytosis, are also required during larval stages to induce fat-body (insect equivalent of the liver) cells to produce antimicrobial peptides after a bacterial infection (Charroux et al., 2009b). In addition, in adult flies, plasmatocytes contribute to reduce the infection susceptibility to various bacteria including E. coli, B. subtilis and importantly S. aureus (Defaye et al., 2009; Nehme et al., 2011). These findings clearly indicate that there is an effective cross-talk between humoral and cellular immunity in insects.

Here, I will describe insect cellular immune functions with emphasis in phagocytosis and review recent findings on phagocytic hemocyte types, the receptors involved and the signaling pathways activated during this cellular response.

Insect cellular immunity

Hemocytes are responsible for a variety of defense responses in insects. Many variations in insect immune responses exist due to the presence of millions of insect species, and we are just beginning to understand these variations (Schmid-Hempel, 2005). However, a number of frequent innate immune responses have been described in most insects studied. These responses include nodulation, encapsulation, melanization, and phagocytosis. These general processes share common elements in terms of pathogen recognition, biochemical signals, and final clearance of the invading microorganism from the hemolymph. Next, I briefly describe our current understanding on these insect innate immune responses.

Nodulation

Nodulation is a predominant cellular response in insects to large bacterial infections. It consists of formation of multicellular hemocyte aggregates that entrap large numbers of bacteria. It begins when hemocytes, together with antimicrobial molecules in the hemolymph, surround bacteria. Hemocytes with their entrapped bacteria form small aggregates that grow by joining with additional hemocytes to form large nodules. The nodule is completed by covering
Phagocytosis. The process of ingesting and destroying a particle begins with the particle recognition by special receptors on the cell. This initial interaction triggers a series of cellular signals that induce rearrangement of the actin cytoskeleton and membrane remodeling. The particle sits on a membrane depression, the phagocytic cup, and then it is surrounded by pseudopods. The membrane fuses around the particle and separates into the cell in the form of a new vesicle, the phagosome. In order to internalize large or numerous particles, the phagocyte recruits additional membrane from intracellular vesicles such as endosomes and the endoplasmic reticulum. The phagosome “matures” to form a phagolysosome by fusing with other vesicles such as lysosomes and undergoing acidification. Inside the phagolysosome, the ingested particle is finally destroyed.

Encapsulation

Encapsulation is the response of hemocytes to large targets such as parasites, protozoa, and nematodes. Hemocytes bind to the target and infiltrate multiple cell layers until they form a capsule around the invader. The capsule is normally melanized at the end (Ling et al., 2006). Inside the capsule the invading organism is killed by reactive cytotoxic products or by asphyxia (Carton et al., 2005; Nappi et al., 2009).

Melanization

Melanization is the process of melanin formation. It is activated during wound healing and also in nodule and capsule formation against large pathogens or parasites in some lepidopteran and dipteran insects, such as Manduca, Pseudolusia and Drosophila (Lavine et al., 2001; Lavine et al., 2002; Kanost et al., 2004; Nappi et al., 2009). The enzyme phenoloxidase (PO) is key in this process. Activation of proPO to PO is mediated by a serine proteinase cascade (Cerenius et al., 2008; Eleftherianos et al., 2011) in adult Drosophila, but also in lepidopterans and requires PRRs such as peptidoglycan recognition protein (PGRP) (Yoshida et al., 1996; Ochiai et al., 1999) or beta-1,3-glucan recognition protein (betaGRP) (Ochiai et al., 1988, 2000). Interaction of these recognition proteins with microbial peptidoglycan or beta-1,3-glucan molecules initiates the activation of the proPO cascade. Then PO binds to foreign surfaces including hemocyte membranes (Ling et al., 2005), where it initiates melanin formation. PO acts on tyrosine and converts it to dopa (Marmaras et al., 2009). Dopa can then be decarboxylated by Ddc to dopamine or further oxidized by PO to dopaquinone. Both products are then further metabolized to eumelanin and finally melanin (Marmaras et al., 2009).

Phagocytosis

Phagocytosis is the process by which cells recognize, bind and ingest relatively large particles (usually larger than 0.5 μm in diameter). Phagocytosis is an evolutionary conserved cell response that was first described 130 years ago by Elie Metchnikoff (1845-1916) in sea-star larva;
where he observed the accumulation of cells he named phagocytes, around a rose thorn that he inserted into the larva to provoke an inflammatory injury (Metchnikoff, 1884; Kaufmann, 2008; Tan et al., 2009). Phagocytosis is probably the oldest defense mechanism against microorganisms. During phagocytosis the target particle is first recognized by phagocytic receptors that activate various signaling pathways in the cell interior (Jones et al., 1999). These signals lead to dramatic changes in the dynamics of the plasma membrane and the cytoskeleton. The membrane extends pseudopods around the particle, forming a cup that moves into the cell. Within few minutes the membrane closes at the distal end, leaving a new plasma membrane-derived phagosome (Yeung et al., 2006) (Fig. 1). Phagocytosis requires a rapid replenishment of plasma membrane. In mammalian leukocytes, endoplasmic reticulum-derived endosomes have been shown to be the source of this newly added membrane (Bajno et al., 2000). In the next 40 minutes, the lumen of the phagosome becomes an environment capable of destroying the ingested particle. This process is called “phagosome maturation” and is the result of changes in the phagosome membrane through fusion with other membranous organelles including lysosomes (Yeung et al., 2006) (Fig. 1).

Phagocytosis is a fundamental cellular process performed by unicellular organisms and by particular cell types in multicellular organisms. In simple organisms such as Amoeba and the slime mold Dicyostelium discoideum, phagocytosis is used both in feeding and in defense (Chen et al., 2007; Cosson et al., 2008). In vertebrates, phagocytosis plays an essential role in embryogenesis and also in host defense mechanisms through the uptake and destruction of pathogens (Greenberg et al., 2002). Phagocytosis also contributes to inflammation and the immune response (Rosales, 2005). In mammals, a subset of specialized cells, named professional phagocytes, is responsible for rapidly and efficiently ingesting invading microorganisms at sites of inflammation. These phagocytes are neutrophils, monocytes and macrophages (Rabinovich, 1995). Neutrophils and monocytes circulate in the blood, while macrophages reside in tissues.

In insects, phagocytosis is performed by a subset of hemocytes in the hemolymph (Strand, 2008). Professional phagocytes in Diptera and Lepidoptera have also been described as plasmacytocytes and granular hemocytes, respectively (Lavine et al., 2002). In agreement with this, plasmacytocytes or granulocytes are the main phagocytic cells in most insects (Meister, 2004; Castillo et al., 2006; Lamprou et al., 2007; Lemaitre et al., 2007; Garcia-Garcia et al., 2009). However, there is clearly a great deal of variability among different insect species. Our knowledge of insect phagocytosis comes mainly from studies on the fruit fly D. melanogaster (Lemaitre et al., 2007; Stuart et al., 2008), on mosquitoes Anopheles (Blandin et al., 2007), which are vectors of the human malaria parasite Plasmodium falciparum, or on the medfly C. capitata (Lamprou et al., 2005; Sideri et al., 2008). This however will change in the future, as more and more reports are coming out describing the phagocytic process by hemocytes from other insect species (Kanost et al., 2004; Costa et al., 2005; Mylonakis et al., 2005; Borges et al., 2008; Castro et al., 2009; Garcia-Garcia et al., 2009; Amaral et al., 2010; Manachini et al., 2010; Wang et al., 2010).

Phagocytosis eliminates mainly two types of targets: microorganisms and “altered self” particles, represented by apoptotic cells. Ingestion of apoptotic cells is important during tissue remodeling and embryogenesis when excess cells undergo programmed cell death (apoptosis) and removal (Hopkinson-Woolley et al., 1994). In insects, phagocytosis of dying cells is fundamental during embryogenesis, especially in the development of holometabolous insects such as D. melanogaster. In this fly, hemocytes eliminate the many apoptotic cells that appear during the process of metamorphosis (Neufeld et al., 2008). Despite the importance of this process in insect development, the mechanisms of phagocytosis of apoptotic cells in insects are still poorly known (Sass, 2008). Ingestion of microorganisms is also fundamental for insect defense against infections. However, it is becoming clear that hemocyte phagocytosis can control some, but not all bacterial infections. For example, it has been reported that E. coli (a Gram-negative bacteria) is more readily phagocytosed than S. aureus (a Gram-positive bacteria) by hemocytes from the mosquito A. gambiæa (Levashina et al., 2001; Hillyer et al., 2003), the fruit fly D. melanogaster (Rämet et al., 2002), and the medfly C. capitata (Lamprou et al., 2007). Similar results were found for the phagocytosis of E. coli by cricket Acheta domesticus hemocytes (Garcia-Garcia et al., 2009), but opposite results for phagocytosis of Streptomyces lividans (a Gram-positive bacteria) by the beetle Zophobas morio hemocytes (Garcia-Garcia et al., 2009). Also in A. aegypti the main response of hemocytes to E. coli was phagocytosis, while the response to M. luteus was melanization (Hillyer et al., 2003). These results should be taken with caution because nonvirulent bacteria are compared with pathogens, therefore we cannot generalize the phagocytic response observed will be similar for all Gram-positive or Gram-negative bacteria. Also, bacteria have been previously killed to perform these phagocytosis assays. Thus, the phagocytosis response in vivo might also be different. Together these reports suggest that indeed in insects several distinct molecular mechanisms controlling phagocytosis must exist.

Our knowledge of phagocytosis comes mainly from studies with mammalian cells and from these studies it is clear that there is much redundancy in this cellular response. Different phagocyte membrane receptors and various elements of the phagocytic machinery seem to have similar and many times overlapping functions. Despite this, much has been learned about phagocytic receptors for opsonins, such as antibodies and complement. Opsonins are substances that cover the particle to be ingested and promote its phagocytosis. The best-studied phagocytic receptors are the receptors for antibody, termed Fc Receptors (Garcia-Garcia et al., 2002; Swanson et al., 2004), and the complement receptors (Jones et al., 1999; Rosales, 2007).
However, our knowledge on the function of individual receptors of phagocytosis in professional phagocytes remains incomplete because these cells are not suitable for many genetic and molecular biology techniques, such as cDNA overexpression or knockout expression of molecules by RNA interference (RNAi). Thus, studies of phagocytosis by D. melanogaster hemocytes have become very attractive because this is a genetically tractable system. In addition, the power of RNAi analysis has been used to develop a molecular screen system for phagocytosis in the Drosophila embryonic S2 (Schneider line 2) cell line. These fruit fly cells present characteristics similar to mammalian macrophages and efficiently ingest bacteria in an actin-dependent manner (Pearson et al., 2003). This system has also been adapted for high-throughput screening with RNAi leading to identification of many phagocytosis-related genes (Rämet et al., 2002; Cheng et al., 2005). Moreover, the system has also identified molecules involved in hemocyte interaction with microorganisms such as E. coli (Rämet et al., 2002), S. aureus (Stuart et al., 2005a), Mycobacterium fortuitum (Philips et al., 2005), Listeria monocytogenes (Agaisse et al., 2005; Cheng et al., 2005), and Candida albicans (Stroschein-Stevenson et al., 2006; Stroschein-Stevenson et al., 2009). Similarly, the power of RNAi has also been used in studies of phagocytosis by mosquito A. gambiae hemocytes (Levashina et al., 2001; Bianchin et al., 2002). Despite the fact that Drosophila S2 cells present characteristics similar to mammalian macrophages (Pearson et al., 2003) the similarity of cultured cells to hemocytes remains an open question. Thus the findings from the studies mentioned above still require in vivo validation. The gold standard is an increased susceptibility to specific infections of mutant insects, coupled with in vitro and in vivo data demonstrating an impaired phagocytosis. Such an in vivo system has recently been described. A genome-wide in vivo Drosophila RNA interference screen was used to uncover genes involved in susceptibility or resistance to intestinal infection with the bacterium Serratia marcescens (Cronin et al., 2009). This system, in turn requires in vitro validation of the genes potentially involved in phagocytosis. But, things look promising since some of the identified genes overlap with those identified in a systems biology Proteomic analysis of phagosomes isolated from cells derived from D. melanogaster (Stuart et al., 2007) (see below).

At the other end of the phagocytosis process, it is the destruction of the ingested particle within the phagosome. In mammals, phagosomes are not only important in innate immunity but also in adaptive immunity since they are active participants of the process of antigen presentation (Houde et al., 2003). Phagosomes vary in nature depending on the cell-surface receptors involved to recognize the target particle, the type of membrane used in their formation, the mechanism of internalization and the nature of the particle. Once formed, the new phagosome undergoes a process known as phagosome maturation (Kinchen et al., 2008). In this process the phagosome fuses with internal vesicles such as endosomes and lysosomes to become a mature phagolysosome (Fig. 1). This mature compartment has an acid environment with highly active hydrolytic enzymes, which stop replication of bacteria and can kill many microorganisms (Kinchen et al., 2008). The importance of the phagosome is also made evident by the fact that some microorganisms can alter the maturation process escape from being killed (Fratti et al., 2001). Thus, there is a great interest in understanding the complex biology of phagosomes. Insect hemocytes and new techniques such as proteomics and computational modeling have also been helpful in elucidating the complexity of the phagosome (Stuart et al., 2007). Proteomics analysis of latex beads-containing phagosomes from D. melanogaster S2 cells has confirmed the complexity of this organelle. Close to 600 D. melanogaster proteins were identified to be associated with phagosomes, and many of them had mammalian orthologs, validating this as a model for mammalian phagocytosis. Computational analysis has predicted that hundreds of protein-protein interactions take place in the phagosome and has identified several signaling pathways that could be initiated from this organelle including activation of the nuclear factor κB (NF-κB) and activation of mitogen-activated protein kinases (MAPK) (Fratti et al., 2001).

Together RNAi and proteomics approaches with insect hemocytes have identified new genes and molecules important for phagocytosis, specially the putative receptors that insect hemocytes use to bind different microorganisms and signaling pathways activated during phagosome maturation. The relevance of these molecules for phagocytosis and host defense can now be tested in vivo.

Insect phagocytic receptors

Commonly for mammalian leukocytes, phagocytosis is initiated after the interaction of opsonins, on the surface of the particle to be internalized, with specific receptors on the phagocyte membrane (Swanson et al., 1995). Phagocytosis can also be triggered, in the absence of opsonins, through the interaction of phagocyte membrane receptors with specific molecules, such as lipids or sugars, which form part of the cell wall of many microorganisms (Stuart et al., 2005b; Stuart et al., 2008). These receptors are known as pattern-recognition receptors (PRRs) because they recognize discrete conserved molecular patterns within microorganism molecules. In insects, several potential PRRs have been identified, and they can be grouped in various types: complement-like molecules, scavenger receptors, epidermal growth factor (EGF)-like repeat-containing receptors, peptidoglycan recognition proteins (PGRPs), integrins, and a highly variant receptor, Down syndrome cell-adhesion molecule (DSCAM) (Table 1).

Complement-like molecules

Thioester-containing proteins (TEPs) constitute an important group of proteins that includes the α2-macroglobulin family of protease inhibitors and the C3/C4 complement factors in vertebrates. The thioester active site typical of and the α2-macroglobulins and complement factors is present
Table 1 Insect phagocytic receptors

<table>
<thead>
<tr>
<th>Insect Receptors</th>
<th>Ligands</th>
<th>Mammalian counterpart</th>
<th>Opsonin</th>
<th>Insect</th>
<th>Refs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complement-like molecules</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEP VI</td>
<td>Candida albicans</td>
<td>Complement</td>
<td>Yes</td>
<td>D. melanogaster S2 cells</td>
<td>Stroschein-Stevenson et al., 2006; Stroschein-Stevenson et al., 2009</td>
</tr>
<tr>
<td>TEP II</td>
<td>E. coli</td>
<td></td>
<td>Yes</td>
<td>D. melanogaster S2 cells</td>
<td></td>
</tr>
<tr>
<td>TEP III</td>
<td>S. aureus</td>
<td></td>
<td>Yes</td>
<td>D. melanogaster S2 cells</td>
<td></td>
</tr>
<tr>
<td>TEP1, TEP3</td>
<td>E. coli, S. aureus</td>
<td></td>
<td></td>
<td>A. gambiae</td>
<td>Moita et al., 2005</td>
</tr>
<tr>
<td>Scavenger Receptors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Croquemort</td>
<td>Apoptotic cells, S. aureus</td>
<td>CD36</td>
<td></td>
<td>D. melanogaster</td>
<td>Franc et al., 1999; Stuart et al., 2005a</td>
</tr>
<tr>
<td>Peste</td>
<td>M. fortuitum</td>
<td>SR-BI, SR-BII</td>
<td></td>
<td>D. melanogaster</td>
<td>Philips et al., 2005</td>
</tr>
<tr>
<td>SR-CI</td>
<td>E. coli, S. aureus</td>
<td></td>
<td></td>
<td>D. melanogaster</td>
<td>Rämet et al., 2001</td>
</tr>
<tr>
<td>EGF-like repeat-containing Receptors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eater</td>
<td>E. coli, S. aureus, S. marcescens</td>
<td></td>
<td></td>
<td>D. melanogaster</td>
<td>Charroux et al., 2009b; Defaye et al., 2009; Kocks et al. 2005; Nehme et al., 2011</td>
</tr>
<tr>
<td>Nimrod</td>
<td>E. coli, S. aureus</td>
<td></td>
<td></td>
<td>D. melanogaster</td>
<td>Kurucz et al., 2007</td>
</tr>
<tr>
<td>Draper</td>
<td>Apoptotic cells, axon pruning, severed axons, S. aureus</td>
<td>CD91 (LRP)</td>
<td></td>
<td>D. melanogaster</td>
<td>Awasaki et al., 2006; Freeman et al., 2003; Hashimoto et al., 2009; MacDonald et al., 2006; Manaka et al., 2004</td>
</tr>
<tr>
<td>Six-microns-under (SIMU)</td>
<td>Apoptotic cells, by glia in the nervous system</td>
<td></td>
<td></td>
<td>D. melanogaster</td>
<td>Kurant et al., 2008</td>
</tr>
<tr>
<td>Peptidoglycan Recognition Proteins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGRP-SC1a</td>
<td>S. aureus</td>
<td>Mammalian PGRP*</td>
<td></td>
<td>D. melanogaster</td>
<td>Garver et al., 2006</td>
</tr>
<tr>
<td>PGRP-LC</td>
<td>E. coli</td>
<td></td>
<td></td>
<td>D. melanogaster</td>
<td>Kurata, 2010; Rämet et al., 2002</td>
</tr>
<tr>
<td>PGRP-LE</td>
<td>L. monocytogenes</td>
<td></td>
<td></td>
<td>D. melanogaster</td>
<td>Yano et al., 2008</td>
</tr>
<tr>
<td>Integrins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α integrins</td>
<td>E. coli, Gram-positive bacteria</td>
<td>Mammalian Integrins</td>
<td></td>
<td>Medfly (C. capitata)</td>
<td>Lamrou et al., 2007</td>
</tr>
<tr>
<td>β integrins</td>
<td>E. coli</td>
<td></td>
<td></td>
<td>Medfly (C. capitata) A. gambiae</td>
<td>Mamali et al., 2009; Moita et al., 2006</td>
</tr>
<tr>
<td>DSCAM</td>
<td>E. coli, S. aureus</td>
<td>Immunoglobulin ?</td>
<td>Yes</td>
<td>A. gambiae D. melanogaster D. melanogaster</td>
<td>Dong et al., 2006; Stuart et al., 2007; Watson et al., 2005</td>
</tr>
</tbody>
</table>

* Soluble molecules with no involvement in phagocytosis.

TEP, thioester-containing proteins; SR-CI, scavenger receptor class C 1; LRP, low-density lipoprotein receptor-related protein; PGRP, peptidoglycan recognition protein; DSCAM, Down syndrome cell-adhesion molecule.

in the TEP proteins. In insects, several TEPs are known in D. melanogaster (Lagueux et al., 2000) and in A. gambiae (Christophides et al., 2002). There are six TEP proteins (TEPI to VI) in the genome of Drosophila, including TEPV which is a putative pseudogene, and TEPVI (also named mcr: macroglobulin complement-related) in which the thioester site is mutated (Bou Aoun et al., 2008). Some of the TEPs are upregulated after a bacterial infection (Lagueux et al., 2000), with TEPIII being an
exception (Bou Aoun et al., 2011). Their function was elucidated from an RNAi screen in Drosophila S2 cells, in which TEPVI was found to bind and increase phagocytosis of C. albicans (Stroschein-Stevenson et al., 2006; Stroschein-Stevenson et al., 2009). Similarly, TEPII binds E. coli and TEPIII binds S. aureus, and both increase phagocytosis (Stroschein-Stevenson et al., 2006) (Table 1). In addition, TEPs also increase phagocytosis in A. gambiae (Moita et al., 2005). Because these TEPs are soluble molecules that bind to microorganisms and induce phagocytosis by insect hemocytes, they behave like typical opsonins. Strengthen this idea is their structural relationship with mammalian complement components. In mammals, specific complement receptors bind the C3 complement factor deposited on microorganisms and promote phagocytosis (Jones et al., 1999; Rosales, 2007). However, insect complement-like receptors specific for binding TEPs on microorganisms have not been described so far. Thus the mechanism by which some TEPs increase phagocytosis remains unclear. In addition, because TEPVI does not have the classical thiorester motif, it is possible that some TEPs may have alternative functions, such as protease inhibitors of the α2-macroglobulin family.

Scavenger receptors

The scavenger receptors are unrelated multiligand receptors that share the capacity of binding to polyanionic ligands. For this reason they can bind multiple microorganisms and are thus important PRRs (Table 1). Croquemort and its mammalian homolog CD36 are class B scavenger receptors. CD36 associates with integrins and mediates ingestion of apoptotic cells. Similarly, Croquemort is involved in phagocytosis of apoptotic cells during larval morphogenesis in D. melanogaster (Franc et al., 1996; 1999) (Fig. 2). In addition, Croquemort has been reported to bind and induce phagocytosis of S. aureus in adult flies (Franc et al., 1999), and this led to the characterization of CD36 as a phagocytic receptor for S. aureus (Stuart et al., 2005a). Because CD36 functions together with phosphatidylserine receptors (Fadok et al., 2000), it was proposed that Croquemort also required cooperation of phosphatidylserine receptor (PSR) for phagocytosis of apoptotic cells in D. melanogaster (Fadok et al., 2001). However, PSR has been shown to be a nuclear protein and its role in phagocytosis is supported only by few PSR loss-of-function experiments (Wolf et al., 2007). In mammals, other phosphatidylserine receptors have been described to be important for phagocytosis of apoptotic cells (Kobayashi et al., 2007). Thus, whether Croquemort needs cooperation of phosphatidylserine recognition to promote ingestion of apoptotic cells remains an open question (Kinchin, 2010).

Peste is another class B scavenger receptor identified with an RNAi screen in Drosophila S2 cells. Peste can bind M. fortuitum (Philips et al., 2005). This result has suggested that mammalian class B scavenger receptors may also be involved in recognition of mycobacteria. This idea is supported by experiments in which the mammalian class B scavenger receptors SR-BI and SR-BII conferred to non-phagocytic cells the capacity of ingesting M. fortuitum (Philips et al., 2005).

SR-CI is another unrelated type of scavenger receptor. Scavenger receptor class C 1 (SR-CI) is expressed in Drosophila hemocytes during embryonic development, and it can bind E. coli (a Gram-negative bacteria) and S. aureus (a Gram-positive bacteria) (Rämet et al., 2001). Its expression is also upregulated in larvae after a bacterial infection (Irving et al., 2005). However, the role of SR-CI in phagocytosis is not clear since phagocytic defects due to mutations of this receptor are very weak, about 20 % of wildtype cells (Rämet et al., 2001; Lazzaro et al., 2006).

Epidermal growth factor (EGF)-like repeat-containing receptors

A new family of PRRs that contain EGF-like repeats to recognize different ligands is being documented in many species from C. elegans, insects, to mammals (Kinchen, 2010). Eater, a D. melanogaster protein, is a transmembrane molecule with 32 EGF-like repeats in its extracellular domain. Eater was the first EGF-like repeat receptor shown to be involved in bacterial recognition. It recognizes bacteria through its four N-terminal EGF-like repeats (Kocks et al., 2005) and it is involved in phagocytosis (Chung et al., 2011) (Table 1). Knockdown expression of Eater in Drosophila S2 cells resulted in reduced E. coli and S. aureus bacterial binding and ingestion. Also, hemocytes from Eater-deficient flies are impaired in phagocytosis of bacteria (Kocks et al., 2005), and flies lacking the eater gene display more susceptibility to infection by ingested Serratia marcescens and to injected Gram-positive bacteria, such as S. aureus or E. faecalis (Kocks et al., 2005; Charroux et al., 2009b; Defaye et al., 2009; Nehme et al., 2011).

Nimrod is another D. melanogaster molecule similar to Eater. It is a transmembrane protein with ten EGF-like repeats in its extracellular domain. Silencing Nimrod expression in Drosophila S2 cells results in less phagocytosis of bacteria, while overexpression increases adhesion of these cells to tissue-culture plates (Kurucz et al., 2007), suggesting that Nimrod may be both a phagocytic receptor and an adhesion molecule (Table 1).

Draper is yet another transmembrane protein with EGF-like repeats in its extracellular domain. It is expressed in glial cells and D. melanogaster hemocytes (Freeman et al., 2003). It is important for phagocytosis of apoptotic cells in the central nervous system (Awasaki et al., 2006; MacDonald et al., 2006), by embryonic hemocytes, and by Drosophila S2 cells (Manaka et al., 2004) (Table 1). Recently, a molecule expressed on apoptotic cells was identified as a ligand for Draper. This molecule, named Pretaporter, is an endoplasmic reticulum protein that relocates to the cell surface during apoptosis to serve as a ligand for Draper in the phagocytosis of apoptotic cells (Kuraishi et al., 2009). Draper is also involved in phagocytosis of both E. coli (Gram-negative) and S. aureus (Gram-positive) bacteria, and recently it was reported that
lipoteichoic acid serves as a ligand for Draper in the phagocytosis of \textit{S. aureus} by \textit{Drosophila} hemocytes (Hashimoto \textit{et al.}, 2009). These reports confirm the idea that Draper is indeed a multi-ligand PRR.

Draper is a homolog of the \textit{C. elegans} apoptotic receptor CED-1 (Gumienny \textit{et al.}, 2001a, b), and similarly to this receptor, Draper also initiates phagocytosis by interacting with CED-6, an adapter protein containing a phosphotyrosine-binding domain, via an ITAM motif in its intracytoplasmic tail (Su \textit{et al.}, 2002). This motif is also present in the apoptotic receptor CD91/low-density lipoprotein receptor-related protein (LRP) (Su \textit{et al.}, 2002). Interestingly, in the mosquito \textit{A. gambiae} a reverse genetics complementation screen (Moita \textit{et al.}, 2005) designed to assign putative regulators of \textit{E. coli} or \textit{S. aureus} phagocytosis into separated functional groups clearly showed that CED-6 is functionally connected to the LRP for efficient phagocytosis of bacteria (Blandin \textit{et al.}, 2007). Together these results suggest that Draper, CED-1, and CD91/LRP all activate a similar phagocytic machinery (see Fig. 2). Clearly, Draper binds apoptotic cells and \textit{S. aureus} to initiate
phagocytosis. However, it is not clear that the signaling pathway shown in Fig. 2 is in fact the same one for both ligands. The model is a composite of the information available today.

Six-microns-under (SIMU) is another Drosophila phagocytosis receptor, which is expressed in highly phagocytic cell types during development and required for efficient apoptotic cell clearance by glia in the nervous system and by hemocytes (macrophages) elsewhere. SIMU belongs to a conserved family of proteins that includes CED-1 and Draper, and strongly binds to apoptotic cells, but does not require membrane anchoring, suggesting that it can function as a bridging molecule (Kurant et al. 2008). Phenotypic analysis revealed that SIMU acts upstream of Draper in the same pathway and affects the recognition and engulfment of apoptotic cells, while Draper affects their subsequent degradation (Kurant et al., 2008; Kinchen, 2010) (see Fig. 2).

Peptidoglycan recognition proteins (PGRPs)

Peptidoglycan recognition proteins (PGRPs) are innate immunity proteins that are conserved from insects to mammals, recognize bacterial peptidoglycan, and function in antibacterial immunity and inflammation. PGRPs have at least one carboxy-terminal PGRP domain (approximately 165 amino acids long), which is homologous to bacteriophage and bacterial type 2 amidases. Mammals have four PGRPs (Dziarski et al., 2006a, 2010). They are secreted proteins expressed in polymorphonuclear leukocytes (PGRP1), in liver (PGRP2), or on body surfaces and in secretions (PGRP3 and PGRP4). All PGRPs recognize bacterial peptidoglycan and three of them (PGRP1, PGRP3, and PGRP4) are directly bactericidal for both Gram-positive and Gram-negative bacteria (Dziarski et al., 2010). Insects have up to 19 PGRPs, classified into short (S) and long (L) forms. The short forms are present in the hemolymph, cuticle, and fat-body cells, whereas the long forms are mainly expressed in hemocytes (Royet et al., 2007; Charroux et al., 2009a). The expression of insect PGRPs is often upregulated by exposure to bacteria. Insect PGRPs activate the Toll or Immune deficiency (Imd) signal transduction pathways (described later) or induce proteolytic cascades that generate antimicrobial products (Steiner, 2004; Dziarski et al., 2006b). Several Drosophila PGRPs have lost this enzymatic activity and serve as microorganism sensors through peptidoglycan recognition. Other PGRP family members, such as PGRP-SC1 (Bischoff et al., 2006) and PGRP-LB (Zaidman-Rémy et al., 2006) have conserved the amidase function and are able to cleave peptidoglycan in vitro. However, the contribution of these amidase PGRPs to host defense in vivo remains unclear. In PGRP-SC1/2-depleted Drosophila larvae, an over-activation of the Imd signaling pathway was detected after bacterial challenge in the gut (Bischoff et al., 2006).

In Drosophila at least three PGRPs have been shown to be important for phagocytosis of bacteria (Table 1). PGRP-SC1a is relevant for phagocytosis of S. aureus (Garver et al., 2006), while the membrane-bound receptor PGRP-LC is involved in phagocytosis of E. coli (Gram-negative) but not Gram-positive bacteria (Rämet et al., 2002). Interestingly, PGRP-SA was proposed to function in phagocytosis of S. aureus (Garver et al., 2006), but this effect was not found in another study (Nehme et al., 2011). The Drosophila PGRP-LC functions synergistically with PGRP-LC in producing resistance to E. coli and B. megaterium infections (Takehana et al., 2004). It is expressed in two forms, the full-length PGRP-LC acts as an intracellular receptor for monomeric peptidoglycan, whereas a version of PGRP-LC containing only the PGRP domain functions extracellularly to enhance PGRP-LC-mediated peptidoglycan recognition on the cell surface (Kaneko et al., 2006). PGRP-LC is also an important PRR against intracellular bacteria such as Listeria monocytogenes (Yano et al., 2008). The PGRP-LC-mediated intracellular response against L. monocytogenes infection includes induction of autophagy (Kurata 2010) and induction of the gene Listericin in cooperation with the JAK-STAT (Janus kinase-signal transducers and activators of transcription) pathway (Goto et al., 2010).

Integrins

Integrins are adhesion molecules found on the surface of virtually all cell types in mammals. They are responsible for binding to extracellular matrix proteins and to adhesion ligands on other cells (Shattil et al., 2004; Arnaout et al., 2007). Insect hemocytes aggregate in multiple layers during encapsulation and bind to microorganisms during phagocytosis. These functions can be mediated by integrins (Rosales, 2007) and indeed various integrins have been found in insect hemocytes (Table 1). β integrins are important during encapsulation of wasp eggs by Drosophila hemocytes (Irving et al., 2005). α integrins are also relevant for encapsulation by M. sexta hemocytes (Levin et al., 2005; Zhuang et al., 2008). Various α and β integrins are required for microbial recognition by granulocytes and plasmacytocytes of P. includens (Lavine et al., 2003). Integrins are clearly important for phagocytosis of both E. coli (Gram-negative) and S. aureus (Gram-positive) bacteria by medfly hemocytes (Foukas et al., 1998; Lampiao et al., 2007; Mamali et al., 2009), and for phagocytosis of E. coli by A. gambiae hemocytes (Moita et al., 2006).

Down syndrome cell-adhesion molecule (DSCAM)

Down syndrome cell-adhesion molecule (DSCAM) is an Ig superfamily receptor that is important for neural development and bacterial recognition in D. melanogaster (Table 1). DSCAM was first identified as a molecule involved in determining neuron connections during development (Schmucker et al., 2000). To achieve this, DSCAM expresses many different isoforms derived from splice variants generated by combining variable and constant gene regions, similarly to the gene rearrangement that generates antigen receptor diversity in B and T lymphocytes in mammals. It is estimated that DSCAM could have more than 38,000 isoforms (Schmucker et al., 2000). In immune tissues, hemocytes and fat-body cells, DSCAM could express more than 18,000 different
Fig. 3 Toll or Immune deficiency (Imd) signal transduction pathways. A) Activation of the transmembrane receptor Toll requires a proteolytically cleaved form of an extracellular cytokine-like polypeptide, Spätzle. After a complex of 4-Spätzle:2-Toll is formed the signaling pathway Myd88/Pelle/Tube leads to phosphorylation and degradation of Cactus (an IκB inhibitor) and translocation to the nucleus of the NF-κB transcription factors Dorsal and Dif. These factors in turn activate transcription of antimicrobial peptides (AMP). B) The Imd pathway is activated by binding of peptidoglycan (PGN) to the PGRP-LC receptor. This initiates signaling to the transcription factor Relish. Imd is connected to the caspase DREDD via the adaptor protein Fas-associated DD protein (FADD). DREDD is believed to have two functions: upstream, it activates the TAK1/IKKβ complex, which in turn phosphorylates Relish; downstream, DREDD cleaves phosphorylated Relish. The N-terminal NF-κB module of Relish then translocates into the nucleus where it activates transcription of antimicrobial peptides (AMP).

extracellular domains and also a similar number of soluble isoforms released to the hemolymph (Watson et al., 2005). Therefore, DSCAM could produce sufficient numbers of microbial recognition receptors to provide a wide range of specificity (Neves et al., 2004; Meijers et al., 2007). Although, presently it is unclear how many DSCAM isoforms are produced by a single cell. DSCAM has been suggested to be important for phagocytosis of E. coli and S. aureus in A. gambiae (Dong et al., 2006), and has also been found associated with phagosomes from Drosophila S2 cells (Stuart et al. 2007). In addition, there is an increase of secreted DSCAM isoforms after a bacterial challenge (Dong et al., 2006). These characteristics have suggested that DSCAM might function similarly to antibody molecules in that they bind to microorganism and promote phagocytosis (Stuart et al., 2008). However, it should be pointed out that data from Drosophila is only from cultured cells and there is not evidence for a role of DSCAM in phagocytosis in vivo. Also, the study in mosquitoes shows that silencing of DSCAM increases susceptibility to E. coli and S. aureus infections, but the connection with phagocytosis is weak. Thus, further studies are needed to confirm the role of DSCAM as an antibody-like molecule that promotes phagocytosis. In addition, the mechanism for DSCAM expression is different from the mechanisms of adaptive immunity, which are based on selection and clonal expansion of lymphocytes (a process not found in invertebrate hemocytes), producing a single type of immunoglobulin receptor on each cell (Blandin et al., 2007).
Pallbearer

Pallbearer is an F box protein found in an in vivo screen for genes required for efficient phagocytosis of apoptotic cells by *Drosophila* S2 cells. F box proteins generally provide substrate specificity to Skp Cullin F box (SCF) complexes, acting as E3 ligases that target phosphorylated proteins to ubiquitylation and degradation via the 26S proteasome. Pallbearer functions in an SCF-dependent manner and its involvement in phagocytosis of apoptotic cells in vivo suggests a role for ubiquitylation and proteasomal degradation in this cellular process (Silva et al., 2007).

Nonaspanins

Nonaspanins comprise an evolutionarily conserved family of proteins with an essentially unknown function. They are characterized by a large N-terminal extracellular domain and nine putative transmembrane domains. Three members in *Dictyostelium discoideum* (Phg1A, Phg1B and Phg1C) and *Drosophila melanogaster*, and four in mammals (TM9SF1-TM9SF4) have been found (Chluba-de Tapia et al., 1997; Schimmoller et al., 1998). Genetic studies in *Dictyostelium* demonstrated that Phg1A is required for cell adhesion and phagocytosis (Cornillon et al., 2000; Benghezal et al., 2003; Benghezal et al., 2006). In *Drosophila*, Phg1A/TM9SF4-null mutant larval hemocytes were sensitive to pathogenic *E. coli* (Gram-negative), but not to *S. aureus* (Gram-positive) bacteria and TM9SF4-defective S2 cells showed reduced bacterial internalization (Bergeret et al., 2008). These defects in phagocytosis were coupled to morphological and adhesion defects in mutant larval hemocytes, which had an abnormal actin cytoskeleton (Bergeret et al., 2008).

Psidin

Psidin is a lysosomal protein required in hemocytes for both degradation of engulfed bacteria and activation of fat-body cells to produce antimicrobial-peptides (AMP). For a long time, the role of *Drosophila* phagocytes in the activation of the humoral immune response has not been clear. Previous studies to determine whether hemocytes play a role in activation of AMP production by the fat-body have relied on domino mutant larvae, in which proliferative tissues are disrupted and hemocyte numbers greatly reduced (Braun et al., 1998). In these mutants, injection of *E. coli* results in normal activation of most AMPs, including Diptericin (Braun et al., 1998), which suggested that activation of Imd- and Toll-pathways is independent of hemocytes. However, domino mutants failed to induce Diptericin during *Erwinia carotovora* (a Gram-negative) gut infection (Basset et al., 2000), suggesting that hemocytes could deliver a signal from the gut to activate Imd signaling in the fat-body. Psidin was then identified in a screen for mutant larvae unable to induce Diptericin in response to injected *E. coli* (Wu et al., 2001). More recently, *Drosophila* larvae Psidin mutants were not able to produce the AMP Defensin after *E. coli* (Gram-negative) or *M. luteus* and *B. subtilis* (Gram-positive) infections. This defect was not rescued by Psidin expression in the fat-body (Brennan et al., 2007). In addition, mutant hemocytes presented impaired phagocytosis, since they could not degrade the ingested bacteria, and Psidin was found localized to lysosomes (Brennan et al., 2007). Thus, the psidin gene acts in larval hemocytes, where it is required for the phagocytic degradation of internalized bacteria and for the induction of Defensin in the fat-body. These findings, whereby phagosome maturation is required for activation of humoral responses are reminiscent of the relationship in mammalian leukocytes, between endosome/phagosome function and immune activation. However, whereas the mechanisms for antigen processing and presentation in vertebrate adaptive immunity have been studied extensively (Houde et al., 2003; Amigorena et al., 2010), the connection between phagosome maturation and initiation of innate immunity are just beginning to be revealed. Future studies will help understanding how phagocytosis and destruction of microorganisms in phagolysosomes are coupled to activation of innate immune responses.

The receptors described above are all involved in insect (host)-microorganism (pathogen) interactions. Most of them have been shown to somehow participate in phagocytosis. However, some of these receptors can be classified as pure PRRs, that is receptors that have been selected during evolution for their ability to recognize conserved microbial structures that microorganisms cannot easily modify, as they are essential to their lifestyles. Among them, we have PGRPs and GNBPs. Some other receptors can be considered “true” phagocytic receptors, that is receptors that are required for fighting off specific pathogens. For example, TEPs and Draper. Several population genetic studies have been conducted with fruit flies, taking advantage of the complete genome sequencing of 12 lines of *Drosophila melanogaster* and one line of *D. simulans* (Jiggins et al., 2003; Sackton et al., 2007). These studies find that PGRP and Gram-negative binding protein (GNBP) genes are highly conserved. In contrast, *Drosophila* TEP genes evolve rapidly under positive selection (Jiggins et al., 2006). Pattern recognition receptors that trigger humoral immunity are evolutionarily rather static, but receptors required for phagocytosis show considerable genomic rearrangement and adaptive sequence divergence (Lazzaro, 2008; Sackton et al., 2010). Thus, we should be alert to make the distinction between regular PRRs that trigger *Drosophila* systemic immune responses and phagocytic receptors, which may not be adequately classified as regular PRRs.

Signaling pathways

Once a microorganism is detected by an immune cell, a series of signaling molecules are activated inside the cell to instruct it for different responses. These molecules follow particular signaling pathways that determine the final cellular response. In mammals the signaling pathways for phagocytosis are relatively well known, particularly for antibody and complement-mediated phagocytosis (Rosales, 2007). In insects, the signaling pathways...
Fig. 4 Phagocytosis pathways in mosquitoes hemocytes. In the mosquito *A. gambiae* two major signaling pathways for phagocytosis of bacteria have been defined with a genetics screen. The intracellular molecules CED-2, CED-5, and CED-6 are the homologs of known components of the two pathways that mediate phagocytosis of apoptotic cells in *C. elegans*. Silencing CED-5 of CED-6 at the same time with identified regulators of phagocytosis permitted assignment of these regulators to one or the other pathway. One pathway, referred as CED-5, involves secreted putative opsonin TEP4, the integrin BINT, and the intracellular components CED-2 and CED-5. The other pathway, referred to as CED-6, involves the secreted proteins TEP1, TEP3, LRIM1, and the transmembrane receptor LPR (low-density lipoprotein receptor-related protein).

The Toll signaling pathway

D. melanogaster Toll pathway was initially identified as a developmental pathway. It involves NF-κB signaling and is essential for embryonic development and immunity (Ashok, 2009; Valanne *et al.*, 2011). From there, the subsequent characterization of Toll-like receptors (TLRs) has reshaped our understanding of the mammalian immune system (Kawai *et al.*, 2011). Activation of the transmembrane receptor Toll requires a proteolytically cleaved form of an extracellular cytokine-like polypeptide, Spätzle (Shia *et al.*, 2009), suggesting that Toll requires cooperation of other PRRs. This idea is supported by the fact that a mutation in a peptidoglycan recognition protein involved in humoral immune responses are relatively well described; but for cellular immune responses, the signaling pathways are only partially known. Although signaling pathways for humoral responses are not directly related to phagocytosis, I will briefly describe them first, for comparison reasons, followed by what is known about the signaling pathways for cellular (phagocytic) responses.

The humoral immune responses mainly involve the release of antimicrobial peptides by the fat-body, via the Toll (Valanne *et al.*, 2011) and the Immune deficiency (Imd) pathways (Kaneko *et al.*, 2005). Gram-positive bacteria and fungi predominantly induce the Toll signaling pathway, whereas Gram-negative bacteria activate the Imd pathway (Fig. 3).
(PGRP-SA) blocks Toll activation by Gram-positive bacteria (M. luteus, Streptococcus faecalis, B. thuringiensis) and significantly decreases resistance to this type of infection (Michel et al., 2001). Toll activation is not only mediated by PGRPs, but it requires GNBPI (Gram-negative binding protein 1) for Gram-positive (M. luteus or Enterococcus faecalis) bacterial infections (Wang et al. 2006), and GNBP3 for fungal (Beauveria bassiana, M. anisopliae, C. albicans, C. glabrata, Saccharomyces cerevisiae, and Aspergillus fumigatus) infections (Gottar et al., 2006; Mishima et al., 2009). In addition, the Drosophila Persephone protease activates the Toll pathway when proteolytically matured by secreted fungal virulence factors. Thus, the detection of fungal infections in Drosophila relies both on the recognition of invariant microbial patterns and on monitoring the effects of virulence factors on the host (Gottar et al., 2006). Toll activation initiates the signaling pathway Myd88/Pelle/Tube that leads to degradation of Cactus and translocation to the nucleus of the NFκB that leads to degradation of Cactus and translocation to the nucleus of the NFκB that leads to degradation of Cactus and translocation to the nucleus of the NFκB that leads to degradation of Cactus and translocation to the nucleus of the NFκB that leads to degradation of Cactus and translocation to the nucleus of the NFκB that leads to degradation of Cactus and translocation to the nucleus of the NFκB that leads to degradation of Cactus and translocation to the nucleus of the NFκB that leads to degradation of Cactus and translocation to the nucleus of the NFκB that leads to degradation of Cactus and translocation to the nucleus of the NFκB that leads to degradation of Cactus and translocation.

The Imd signaling pathway

The Imd pathway is activated by the PGRP-LC receptor (Gottar et al. 2002) and initiates signaling to the transcription factor Relish (Choe et al. 2002), via the pathway FADD/DEGD and the pathway TAK1/IKKb (Kaneko, 2005; Aggarwal, 2008; Silverman, 2009) (Fig. 3B).

Phagocytosis signaling pathways

Arguable, the most relevant cellular immune response in insects is phagocytosis. Several signaling pathways have been described for this function in various insect species. In D. melanogaster hemocytes, an important phagocytic receptor is Draper (Table 1). This receptor mediates phagocytosis of apoptotic cells by activating Shark, a non-receptor tyrosine kinase, similar to the mammalian Syk. Shark binds to Draper via an ITAM motif present in the cytoplasmic tail of Draper. In addition, Draper/Shark interaction is dependent on phosphorylation of Draper by the kinase Src (Ziegenfuss et al., 2008). Draper also interacts with CED-6 (Su et al., 2002), an adapter protein containing a phosphotyrosine-binding domain, to initiate phagocytosis. Thus, Draper-mediated phagocytosis activates the Draper/Src/Syk/CED-6 pathway (Fullard et al., 2009) (Fig. 2). In addition, it was recently found that Undertaker (UTA), a Drosophila Juncpholin protein, is also required for Draper-mediated phagocytosis. Juncpholinipus couple Ca^{2+} channels at the plasma membrane to those of the endoplasmic reticulum (ER), the Ryanodine receptors (Cuttell et al., 2008). Draper, CED-6, UTA, the Ryanodine receptor Rya-r44F, the ER Ca^{2+} sensor dSTIM, and the Ca^{2+}-release-activated Ca^{2+} channel dOrai were placed in the same pathway promoting calcium homeostasis and phagocytosis (Cuttell et al., 2008) (Fig. 2).

As mentioned before, in the mosquito A. gambiae two major signaling pathways for phagocytosis of bacteria have been defined with a genetics screen (Moita et al. 2005). One pathway, referred as CED-5, involves secreted putative opsonin TEP4, the integrin BINT, and the intracellular components CED-2 and CED-5 (Fig. 4). Another pathway, referred to as CED-6, involves the secreted proteins TEP1, TEP3, LRM1, and the transmembrane receptor LPR (Blandin et al., 2007) (Fig. 4).

In medfly hemocytes, phagocytosis of bacteria involves the pathway integrin/Src/FAK/MAP kinases, that ends in activation of an Elk-1-like protein (Mamali et al., 2008a). Activated Elk-1-like is localized exclusively in the cell nucleus and it is associated with FAK (Mamali et al., 2008b) (Fig. 5). MAP kinases can also be activated by other ligands such as LPS and latex beads (Lamprou et al., 2005). The signaling pathways from these stimuli to MAP kinases are still not defined.

The signaling pathways for phagocytosis of bacteria by insect hemocytes are still incomplete. However, the pathways known resemble the pathways described in mammalian phagocytes. This suggests that many other signaling molecules described as relevant for phagocytosis in mammalian phagocytes will also be found to participate in phagocytosis by insect hemocytes. In support of this view, there are reports indicating that other signaling molecules are clearly involved in phagocytosis. It remains to place these signaling molecules within the corresponding signaling pathway. Some of these signaling molecules participating in phagocytosis by insect hemocytes are mentioned next.

Rho

Rho is a family of small GTPases, homologous to Ras, that includes Rho, Rac, and Cdc42. These GTPases are involved in regulating the actin cytoskeleton (Burridge et al., 2004). In Drosophila Rac1 (Avet-Rochex et al., 2007) and Rac2 (Williams et al., 2006) are relevant for phagocytosis. In medfly hemocytes Rho GTPases participate in LPS and E. coli phagocytosis (Soldatos et al., 2003).

FAK

Focal adhesion kinase (FAK) was first described as a kinase associated to focal adhesions, which are the cell adhesion structures where the actin cytoskeleton connects with the extracellular matrix via integrins. Upon integrin engagement, FAK is activated and functions as a docking molecule for Src family kinases and other signaling molecules. FAK plays a central role in various cell responses such as cell spreading and migration, cell proliferation and apoptosis (Schaller, 2010). An insect FAK homolog, DFAK56 has been found in the central nervous system, epidermis, nerve cord, and visceral mesoderm of D. melanogaster (Palmer et al., 1999). FAK has been shown to be relevant for phagocytosis of E. coli by insect hemocytes (Metheniti et al., 2001).

Syk

Spleen tyrosine kinase (Syk) is a non-receptor tyrosine kinase with a clear and essential role in mammalian Fc receptor and integrin signaling in phagocytes (Rosales, 2007). In these cells, Syk...
Fig. 5 Phagocytosis pathways in medfly hemocytes. In medfly hemocytes, phagocytosis of bacteria involves the pathway integrin/Src/FAK/MAP kinase, which ends in activation of an Elk-1-like protein. Upon integrin engagement, FAK is activated and functions as a docking molecule for Src family kinases and other signaling molecules such as MAP kinases. MAP kinases then phosphorylate Elk-1-like. Active, phosphorylated Elk-1-like is localized exclusively in the cell nucleus in association with FAK. MAP kinases can also be activated by other ligands such as LPS and latex beads, but the signaling pathways from these stimuli to MAP kinases are still not defined. Using pharmacological inhibitors for all three types of MAP kinases (the extracellular signal-regulated kinases (ERKs), the c-jun N-terminal kinases (JNKs), and the p38 mitogen activated protein) in medfly hemocytes greatly reduced bacterial ingestion, confirming the role for all MAP kinases in phagocytosis.

activates cytoskeleton rearrangements, gene expression, and phagocytosis. In insects, the homolog of Syk, Shark is important for Draper-dependent glial phagocytosis (Ziegenfuss et al., 2008) (Fig. 3).

Src

Src is the prototype of the Src family of tyrosine kinases (Ingley, 2008). These kinases are involved in many cellular functions including cell proliferation, differentiation, and phagocytosis. Similarly, Src has been reported to participate in various Drosophila functions including maintenance of epithelial integrity (Langton et al., 2007), fusome development and karyosome formation (Djajaeva et al., 2005), and phagocytosis (Ziegenfuss et al., 2008). Src also participates in phagocytosis by medfly hemocytes, in particular associated with FAK (Mettheniti et al., 2001; Soldatos et al., 2003; Lamprou et al., 2007).

MAP kinases

MAP kinases are a group of evolutionary conserved signaling kinases involved in many important cellular functions, such as cell proliferation, differentiation, development, apoptosis, inflammation, and phagocytosis. Three MAP kinase families are known: the extracellular signal-regulated kinases (ERKs), the c-jun N-terminal kinases (JNKs), and the p38 mitogen activated protein (p38). In Drosophila, Rolled, Basket, and Dp38 are the homologs of mammalian ERK, JNK, and p38, respectively (Han et al., 1998; Lim et al., 1999). They all have been implicated in phagocytosis by insect hemocytes. Inhibition of ERK in M. sexta hemocytes reduced phagocytosis of E. coli bacteria (de Winter et al. 2007). Also the use of pharmacological inhibitors for all three types of MAP kinases in medfly hemocytes greatly reduced...
Fig. 6 proPO and Ddc pathways. After bacterial challenge, membrane-bound prophenoloxidase (proPO) is converted to active phenoloxidase (PO) through limited proteolysis by serine proteases. Active PO then catalyzes tyrosine into dopa. Another enzyme, dopa decarboxyilase (Ddc) is also expressed on the surface of these cells and it transforms dopa into dopamine. PO can also use dopa and dopamine as substrates to form quinones that are reactive intermediates for melanization, nodulation, and phagocytosis. MAP kinases activated by LPS or bacteria seem to be relevant for secretion of the serine proteases needed for initial proPO activation.

phagocytosis (Soldatos et al., 2003; Lamprou et al., 2005, 2007). Similarly, inhibition of a JNK-like protein in the mosquito A. albopictus cell line C6/36 resulted in reduced phagocytosis (Mizutani et al., 2003).

PI-3K
Phosphoinositide 3-OH kinase (PI-3K) is a phospholipid kinase that provides cells with a survival signal that allows them to withstand apoptotic stimuli. PI-3K is also involved in many other important cellular functions including cell migration, lymphocyte activation and phagocytosis (Downward, 2004). In insects, PI-3K has been reported to participate in phagocytosis of bacteria in *M. sexta* (de Winter et al., 2007) and endocytosis of LPS by medfly hemocytes (Soldatos et al., 2003). Class I PI-3K (Rusten et al., 2004; Berry et al., 2007) and class III PI-3K (Juhász et al., 2008) also seem to be involved in autophagy in *Drosophila*.

proPO
The prophenoloxidase (proPO) system is an important component of the innate immune system in insects. It is activated by bacteria infections and participates is several humoral and cellular responses including melanization, wound healing, encapsulation, nodulation, and phagocytosis (Cerenius et al., 2008). After bacterial challenge, cell-free and membrane-bound proPO is converted to active PO (Fig. 6) through limited proteolysis by serine proteases (Cerenius et al., 2004; Mavrouli et al., 2005). Active PO then catalyzes the formation of quinones that are reactive intermediates for melanization and nodulation (Ling et al., 2005; Jiang, 2008).

Ddc
Activation of proPO seems to be insufficient to induce ingestion of bacteria by medfly hemocytes (Lamprou et al., 2007). However, another enzyme, dopa decarboxyilase (Ddc) is also expressed on the surface of these cells and it is reported to be important for nodulation, melanization, and phagocytosis, since treatment with small interfering RNA (siRNA) for Ddc markedly blocked *E. coli* phagocytosis (Sideri et al., 2008) (Fig. 6). Also, a microarray analysis in *Drosophila* showed that Ddc expression levels increased after a bacterial infection (De Gregorio et al., 2002). Ddc seems to be involved in wound healing, parasite defense, and behavior of insects (Hodgetts et al., 2006).

Eicosanoids
Eicosanoids are active compounds biosynthesized by enzymatic oxygenation of arachidonic acid (AA) or other C20 polyunsaturated fatty acids. Phospholipase A2 (PLA2) is the enzyme
responsible for releasing AA from cellular phospholipids. Free AA can be metabolized by cyclooxygenase (COX) to produce prostaglandins (PG), by lipoxygenase (LOX) to produce leukotrienes, lipoxins and other products, and by cytochrome P450-epoxygenase to produce epoxyeicosatrienoic acids (Stanley et al., 2009). PLA2 is expressed in fat-body cells and hemocytes and is increased after a bacterial infection (Tunaz et al., 2003). Many reports show that eicosanoids are involved in several immune responses including phagocytosis (Figueiredo et al., 2008; Castro et al., 2009; Shrestha et al., 2009), nodulation (Miller et al., 1999; Zhao et al., 2009), hemocyte spreading (Downer et al., 1997), elongation (Miller, 2005), release of proPO (Shrestha et al., 2008), and protection against nematode invasions (Hyrsil et al., 2011).

Concluding Remarks

Phagocytosis is a well-established innate immune defense mechanism in higher organisms. It is fundamental for the host defense and also for stimulating the adaptive arm of the immune response. In insects, phagocytosis is also an innate immune response performed by hemocytes circulating in the hemolymph. Among the different types of hemocytes, plasmatocytes and granulocytes are consistently reported as phagocytic in many insect species. The cellular and molecular mechanisms for hemocyte phagocytosis are relatively well described for Drosophila, mosquitoes, and medfly. However, important variations in phagocytosis exist among different species. This underlines the fact that much new research is needed in more insect species to fully understand this cell process in insects. New techniques such as RNAi and flow cytometry, together with system-based approaches such as genomics and proteomics will certainly generate exciting advances in our understanding of phagocytosis. The signaling pathways for phagocytosis are only partially known. Several signaling molecules have been reported as relevant for phagocytosis, but we do not have information yet to place them in a particular signaling pathway. These gaps will certainly be filled as we continue studying how insects cope with the many pathogenic microorganisms they are exposed to.

Acknowledgements

This work was supported by grant 48573 from Consejo Nacional de Ciencia y Tecnología, Mexico, and by grant IN205311-2 from Dirección General de Asuntos del Personal Académico de la Universidad Nacional Autónoma de México (UNAM).

References

Hillyer JF, Schmidt SL, Christensen BM. Rapid phagocytosis and melanization of bacteria and Plasmodium sporozoites by hemocytes of the

Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34: 637-650, 2011.

Moita LF, Vriend G, Mahairaki V, Louis C, Kafatos FC. Integrins of Anopheles gambiae and a putative role of a new beta integrin, BINT2, in...

